Making Green by Going Green - The Workshop

Robert Roth, Ph.D. CEO - Big Green Zero

What Does Green Mean?

Definition of sustainability:

(Brundtland Commission of the United Nations, 1987)

"Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs." In *your* organization, what does "green" mean?

Sustainable Energy

"Sustainable energy is the provision of energy that meets the needs of the present without compromising the ability of future generations to meet their needs."

"As a practical matter, sustainable energy has to be cost-effective."

Jim Burpee

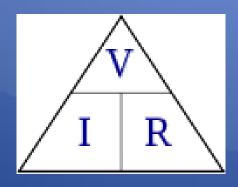
So . . . What is Energy?

"Energy is a quantity that is often understood as the ability a physical system has to do work on other physical systems."

Practically speaking, "Energy is the stuff that makes stuff work."

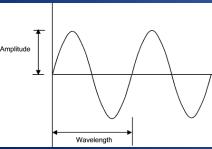
Jim Burpee

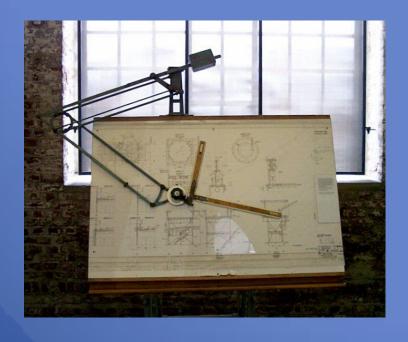
Source: Wikipedia


Wikipedia

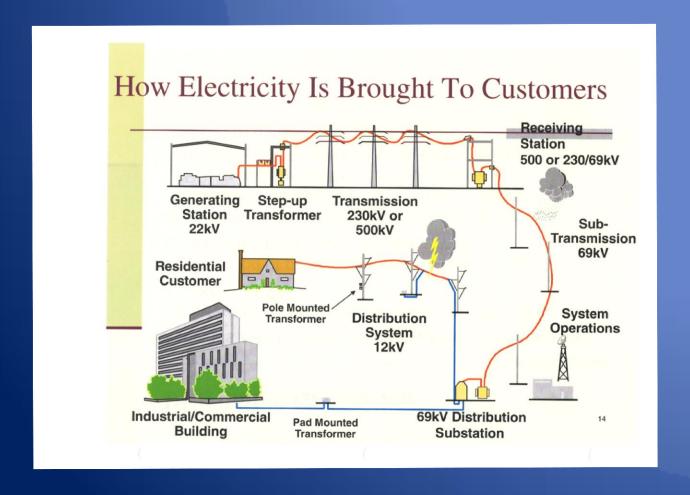
Electrical Energy

- Volts (V)
 Volts = Amps X Ohms
- Amps (I)
 Amps = Volts/Ohms
- Ohms (R)
 Ohms = Volts/Amps

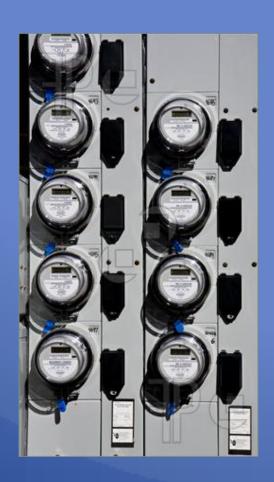



Electrical Power

- WattsWatts = Volts X Amps
- KVA x PF (Power Factor) = KW


Amps

Electrical Power Distribution

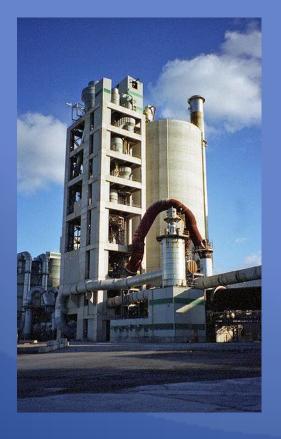


Building Power Distribution

- Meters & Sub-Meters
- Distribution Panels

Power Consumption vs. Power Production

Power Producing Devices


Power Consuming Devices

Bringing Sustainable Energy to The Practice of Sustainable Architecture

Energy Conservation

- HVAC
- Lighting
- Pumps & Motors
- Sensors & Controls
- Building Envelope
- Commissioning

Energy Production

- Solar Photovoltaic
- Solar Thermal
- Wind
- Hydro
- Geothermal
- Combined Heat & Power

Energy Conservation

HVAC

- Pros: Lower operating costs, consider ducting, IDEC, Reduce redundancy
- Cons: Initial cost, rework cost, engineering costs

Lighting

- Pros: Reduced watt usage, longer bulb life, reduced maintenance
- Cons: More expensive, light levels, light spectrum variances

Pumps & Motors

- Pros: Reduce operating costs, increase motor/pump life, reduced maintenance
- Cons: Replacement costs, engineering costs

Sensors & Controls

- Pros: Automated runtime, reduced personnel, reduced maintenance
- Cons: Mfg mismatch, system only as good as the operator, maintenance personal

Building Envelope

- Pros: Reduce heat/cooling load, reduce heat island effect, better interior comfort
- Cons: Upfront design considerations, cost, maintenance
- Commissioning (assuring continuing optimal system performance)

Energy Production

Solar Photovoltaic

- Pros: Free power once the system is paid for, very low maintenance, environmentally friendly
- Cons: Expensive, large install area, inverter life cycle costs, daytime operation only, shade issues

Solar Thermal

- Pros: Free power once the system is paid for, environmentally friendly, can be used for A/C
- Cons: Expensive, large install area, maintenance costs, best application is for heating

Wind

- Pros: Free power once the system is paid for, environmentally friendly, scalable
- Cons: Expensive, maintenance, only operates in the wind, over-revving, radar shadowing, birds

Hydro

- Pros: Free power once the system is paid for, environmentally friendly?
- Cons: Expensive, not usually fish friendly, probably not going to design one

Geothermal

- Pros: Excellent temperature source/sink, free heat
- Cons: Install costs, maintenance, soil condition considerations

Combined Heat & Power

- Pros: High efficiency, provides both electrical and heating, cost
- Cons: Should design for thermal load, maintenance costs, cost

What Does Green Mean?

Definition of sustainability:

(Brundtland Commission of the United Nations, 1987)

"Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

In your organization, what does "green" mean?

